A	Blatella germanica, 272
Acid gels, 55–56	Boiling point
Aerosols	of water, 8–9
for insects, 270–271	Boltzmann constant, 17
Alar apple scare, 128	Bovine spongiform encephalopathy (BSE), 104,
Almond moth, 249, 266, 270, 271	113, 120
Anagasta kuehniella, 274	Bread
Angoumois grain moth, 246	moisture content in, 37
Anisopteromalus calandrae, 279	Brine vacuum impregnation (BVI), 219
Apple	Broken corn and foreign material
vacuum impregnation response of, 215	(BCFM), 154
Aspergillus niger, 84	Brownian motion, 16-18, 19
Asymmetric stretching	BSE. See Bovine spongiform encephalopathy
vibrational motion of water, 16	1,3-Butylene glycol
	Staphylococcus aureus and, 35
В	BVI. See Brine vacuum impregnation
Bacillus thuringiensis, 273	
BCFM. See Broken corn and foreign material	C
Beauveria bassiana, 277	Cadra cautella, 249, 271, 279, 280
Beef, hormone-fed, 140	Callosobruchus, 279
Beef jerky	Candy, hard
moisture content in, 37	moisture content in, 37
Beetles	Carrot
cigarette, 248, 266, 273	vacuum impregnation response of, 215
confused flour, 246, 266, 271	Carr-Purcell-Meiboom-Gill (CPMG)
dermastid, 247-248, 274	sequence, 44
drugstore, 248	Cavendish, Henry, 2
grain/flour, 246–247	Central route of attitude formation, 116
hairy fungus, 248	Centrifuge system, 159
khapra, 247	Cephalonomia ferrigineus, 280
merchant grain, 246	Cephalonomia waterstoni, 280
red flour, 246, 266, 271	Cereal
saw-toothed grain, 246, 266	moisture content in, 37
spider, 248	CGF. See Corn gluten feed
warehouse, 247, 266	Cheese
Bending	moisture content in, 37
vibrational motion of water, 16	Chemical shift, 88

Cheyletus eruditus, 281	D
Chicken, dioxin in, 129	DDGS. See Distiller dried grains with solubles
Cigarette beetle, 248, 266, 273	DE. See Diatomaceous earth
CJD. See Creutz-Jakob disease	DEA. See Dielectric analysis
Clausius-Clapeyron equation, 25	Dehydration and impregnation by drenching
Coca-cola, contamination of, 104, 129	(DID), 218
Cockroach, German, 272	Dermastid beetles, 247-248, 274
Coffee, pancreatic cancer and, 128	Dewatering-impregnation-soaking in
Confused flour beetle, 246, 266, 271	concentrated solutions (DIS), 175
Consumer	Diatomaceous earth (DE), 272, 275
behavior and	DID. See Dehydration and impregnation by
false assumptions	drenching
education fallacies, 130-138	Dielectric analysis (DEA)
profiling and response, 121–122	temperature observation and, 75
accountable, 122, 123, 125	Diethylstilbestrol, beef and, 127
alarmist, 123–124, 125	Differential scanning calorimetry (DSC)
concerned, 123, 125	temperature observation and, 74
conservatives, 123, 125	Diffusion-ordered nuclear magnetic resonance
Consumer associations	spectroscopy
source credibility of, 112	(DOSY), 56
Contagious swine fever, 104	Dioxin, in chicken, 129
Cookies, crisp	DIS. See Dewatering-impregnation-soaking in
moisture content in, 37	concentrated solutions
Corcyra cautella, 266, 270	Distiller dried grains with solubles (DDGS),
Corcyra cephalonica, 266	166–167
Corn gluten feed (CGF), 156	DMA. See Dynamic mechanical analysis
Corn kernel	DOSY. See Diffusion-ordered nuclear magnetic
composition of, 153–154	resonance spectroscopy
structure of, 153–154	Dried meat
Corn kernel. See Enzymatic corn wet milling	Staphylococcus aureus and, 35
process	A Drop of Water, 3
CP. See Supercritical point	Drugstore beetle, 248
CP/MAS. See Cross-polarization/magic-angle	Drying
spinning nuclear magnetic resonance	characteristics of
CPMG. See Carr-Purcell-Meiboom-Gill	aroma compound retention, 204
sequence	color, 199, 200, 201, 202
Crackers	rehydration, 204
moisture content in, 37	shrinkage, 202–204
Cranberry scare, 127	osmotic treatment after, 199
Creutz-Jakob disease (CJD), 113	techniques of
Cross-polarization/magic-angle spinning	air, 192–196
(CP/MAS) nuclear magnetic	infrared, 197–199
resonance, 53	microwave, 197–199
Cross-relaxation spectroscopy (CRS), 56	DSC. See Differential scanning calorimetry
CRS. See Cross-relaxation spectroscopy	DVS. See Dynamic vapor sorption instrument
Cryptolestes ferrugineus, 246, 253, 259	Dynamic mechanical analysis (DMA)
Cryptolestes pusillus, 246	temperature observation and, 74
Cyfluthrin, 271–272	Dynamic vapor sorption (DVS)
Cytoplasmic polyhedrosis virus, 277	instrument, 30

${f E}$	persuasion, 117–118
Eggplant	risk perception and, 118-121
vacuum impregnation response of, 215	consumer behavior and
Electric blankets, 129	false assumptions
Electron spin resonance (ESR) spectroscopy	education fallacies, 130-138
temperature observation and, 75	consumer profiling and response,
Electron spin resonance (esr) spectroscopy, 53	121–122
Empedocles of Acragas, 2	accountable, 122, 123, 125
Endosperm, 153	alarmist, 123-124, 125
Enzymatic corn wet milling process	concerned, 123, 125
benefits of, 163–164	conservatives, 123, 125
development of, 160–163	crisis-related responses
future of, 166–167	complications, 146–147
issues with, 164–165	institution response to, 144–145
Ephestia elutella, 279	irrational vs. rationale, 124–125
Ephestia kuehniella, 249, 274	passive vs. aggressive, 124, 125
Escherichia coli, 104, 106, 107, 146	risk management measures development
ESR. See Electron spin resonance spectroscopy	145–146
Ethanol	short-term vs. long-term, 125–126,
Staphylococcus aureus and, 35	127–129
European institutions	impact of, 106–107
source credibility of, 113	managing
Eutectic point (T _e), 89	communication channels,
1 (6)	138–139, 140
F	hierarchical understanding,
Fish	138, 139
moisture content in, 37	packaging and labeling, 139–141
Flour beetles, 246–247	product position, 141
Flour moths, 248–249	public concern addressing, 142–143
Food(s). See also special food	single information authority,
nuclear magnetic resonance for, 50–59	143–144
acid gels, 55–56	public panic and, 106–107
casein dispersion, 55–56	consumer response and, 108, 109
chemical stability, 58–59	crisis communication, 108, 109–110
glasses, 51–53	media and, 110–112
measurements, 59–61	source credibility, 112–114, 115
microbial stability, 58–59	Foot-and-mouth disease, 104
rennet gels, 55–56	Formulation, 212–214
solid mobility measurement, 56–58	Fourier transform infrared (FTIR)
starch granules, 53–55	spectroscopy, 53
sugar solution, 51–53	Freezing
processing of, 174	aroma compounds, 211–212
types of, 21–22	pigments, 210–211
Food facility landscapes, 250–254	texture, 205–210
Food polymer science, 27	vitamins, 210–211
Food protection regulations, 242–244	Fruit snacks
Food salting process, 217–219	moisture content in, 37
Food scare(s), 104	Fruits
behavior and	moisture content in, 37
formation of, 115–118	processed, 190–192
101111ation 01, 113–110	processed, 150–152

Frying, 217	Grocers, small
FTIR. See Fourier transform infrared	source credibility of, 113
spectroscopy	Gum, chewing
Fumigants	moisture content in, 37
for insects, 268–270	GV. See Granulosis virus
Functional foods, 214, 216	Ovi dee Granalesis virus
Fusion, enthalpy of	Н
water and, 8	H. See Hydrogen
,	Habrobracon hebetor, 279, 280
G	HACCP. See Hazard analysis critical
Gay-Lussac, Joseph, 2	control points
Gels	Hairy fungus beetle, 248
acid, 55–56	Handel, George Frideric, 3
rennet, 55–56	Hazard analysis critical control points
Germ, 153	(HACCP), 243
German cockroach, 272	HDA. See High-density amorphous (HDA)
GIPSA. See Grain Inspection, Packers, and	HDM. See Hydrodynamic mechanism
Stockyards Administration	Heat
Glass, transition of	for insects, 274–275
assignment of, 69-72	Heat capacity
definition of, 69–72	of water, 8
distance and, 77–78	HFCS. See High fructose corn syrup
for foods, 78–85	High fructose corn syrup (HFCS), 151
ingredient selection, 82	High-density amorphous (HDA) ice, 15
measurement in, 85	Honey
mobility/stability maps, 79-82,	moisture content in, 37
80, 81	Horn, 245
product behavior during processing,	Hurdle technology, 89
84–85	Hydrodynamic mechanism
product stability, 82–84	(HDM), 184
shelf life, 82–84	Hydrogen (H)
state diagrams, 79–82	isotope, 11
measurement methods of, 72–73, 74–75,	Hydrogen atom
75–77	residence time of, 4
physical states in, 64–68 timescales and, 77–78	Hydrogen bonding, 6–8 duration of, 7, 8
$a_{\rm w}$ and, 85–86	ice and, 7
Glycerol	number of, 7, 8
Staphylococcus aureus and, 35	strength of, 7, 8
GM potato hox, 104	vapor phase, 6
Government	water and, 7
public concern address in, 143	Hydrological cycle, 89
Grain beetles, 246–247	, g,,
Grain borers, 245–246	I
Grain Inspection, Packers, and	Ice
Stockyards Administration	high-density amorphous, 15
(GIPSA), 258	hydrogen bonding and, 7
Grain weevils, 245	low-density amorphous, 15
Granary weevil, 245	very high-density amorphous, 15
Granulosis virus (GV), 277	Ice cream, 21–22

IDK. See Insect-damaged kernels	J
Indian meal moth, 248, 266, 270	J coupling. See Spin-spin coupling
Infrared, vibrational motion and, 16	Jams
Insect-damaged kernels (IDK), 258	manufacturing of, 216-217
Insecticides	moisture content in, 37
aerosols, 270–271	Jellies
biological control	moisture content in, 37
insect pathogens, 275-278	
parasites, 278–281	K
predators, 278–281	Khapra beetle, 247
fumigants, 268–270	Kiwi
heat, 274–275	vacuum impregnation response of, 215
pheromones, 273–274	
sprays, 270–271	L
surface treatments, 271–272	Lariophagus distinguendus, 279
Insects	Lasioderma serricorne, 248, 266, 273
insecticides for	Latent heat, 89
aerosols, 270–271	Lavoisier, Antoine, 2
biological control	LC-NMR. See Liquid chromatography-nuclear
insect pathogens, 275-278	magnetic resonance
parasites, 278–281	LDA. See Low-density amorphous
predators, 278–281	Lesser grain borer, 245, 266
fumigants, 268–270	Lewis, Gilbert N., 22
heat, 274–275	Liquid chromatography-nuclear magnetic
pheromones, 273–274	resonance (LC-NMR), 60
sprays, 270–271	Listeria, 104, 107
surface treatments, 271-272	Low-density amorphous (LDA) ice, 15
stored-product, pests	Lunchmeat
dermastid beetles, 247-248	moisture content in, 37
flour beetles, 246–247	
flour moths, 248-249	M
grain beetles, 246–247	Mad cow disease, 104, 134
grain borers, 245–246	Maize weevil, 245
grain weevils, 245	Mandarin peel
management tactics	vacuum impregnation response
housekeeping and exclusion,	of, 215
263–265	Mango
insecticides. See Insecticides	vacuum impregnation response of, 215
packaging, 265–267	Margarine, 127
mealworms, 247	Market vendors
mites, 249–250	source credibility of, 113
monitoring tactics, 257-262	Marshmallows
psocids, 249	moisture content in, 37
spider beetles, 248	Mattesia trogodemae, 274, 278
Integrated pest management (IPM), 241,	Meal moth, 249
254–257	Mealworms, 247
Integrated sanitation management	Meat
(ISM), 263	dried, 35
IPM. See Integrated pest management	moisture content in, 37
ISM. See Integrated sanitation management	Mediterranean flour moth, 249, 274

Melting point	starch granules, 53-55
of water, 8–9	sugar solution, 51–53
Merchant grain beetle, 246	imaging, 45
Metarhizium anisopliae, 277	principles of, 38–45
Methyl bromide, 268	relaxation and mobility, 46-48
Metschnikowia pulcherrima, 192	relaxation rate of, 61–63
Milk	relaxometry, 45
dried	timescales and, 48-50
Staphylococcus aureus and, 35	Nuclear magnetic resonance (NMR)
nonfat, 37	spectroscopy
whole	temperature observation and, 75
moisture content in, 37	Nuclear Overhauser effect (NOE), 50, 89
Mites, 249–250	Nuclear polyhedrosis virus (NPV), 277
Moisture content, 37	
Monarch butterflies, 104	0
Monet, Claude, 3	O. See Oxygen
Moths	Orange peel
almond, 249, 266, 270, 271	vacuum impregnation response of, 215
angoumois grain, 246	Organophosphate dichlorvos, 270
flour, 248–249	Oryzaephilus mercator, 246
Indian meal, 248, 266, 270	Oryzaephilus surinamensis, 246, 266
meal, 249	Osmosis
Mediterranean flour, 249, 274	definition of, 177
rice, 266	Osmotic dehydration
	combined processes and, 190
N	demand and, 176–177
National authorities	economic interest in, 176
source credibility of, 112	mass transport phenomena during, 174-175
Natural-bond orbital (NBO), 6	modeling, 185–190
NBO. See Natural-bond orbital	plant material nature, 179–181
Nematodes, 280	process control and, 176–177
NFDM. See Nonfat dried milk, 9-11, 112	process of, 174
NMR. See Nuclear magnetic resonance	raw material treatments and, 181–185
NOE. See Nuclear Overhauser effect	solute penetration and, 175
Nonfat dried milk (NFDM)	Oxygen (O)
moisture content in, 37	isotope, 11
NPV. See Nuclear polyhedrosis virus	
Nuclear magnetic resonance (NMR)	P
classes of, 45	Pancreatic cancer, coffee and, 128
diffusometry, 45	Parasites, 278–281
distance and, 48–50	Parmesan cheese
for foods, 50–59	moisture content in, 37
acid gels, 55–56	Pasta
casein dispersion, 55–56	moisture content in, 37
chemical stability, 58–59	PEC. See Proximity equilibration cells
glasses, 51–53	PEF. See Pulsed electric field
measurements, 59–61	PEG-200
microbial stability, 58–59	Staphylococcus aureus and, 35
rennet gels, 55–56	PEG-400
_ · · · · · · · · · · · · · · · · · · ·	
solid mobility measurement, 56–58	Staphylococcus aureus and, 35

Pepperoni	Rice weevil, 245, 266
moisture content in, 37	Risk attitude, 119, 122
Pericarp, 153	Risk perception, 119, 122
Peripheral route of attitude formation, 116	
Pests. See Insects	\mathbf{S}
PFGSTE. See Pulse-field gradient-stimulated	Saccharin, 128
echo sequence	Salmonella, 106
Phase diagram, 89	Salt mixtures
Pheromones	Staphylococcus aureus and, 35
for insects, 273–274	Saw-toothed grain beetle, 246, 266
Phosphine gas, 268–269	SDS-PAGE. See Sodium dodecyl
Pineapple	sulfate-polyacrylaxide gel
vacuum impregnation response of, 215	electrophoresis
Plodia interpunctella, 248, 253, 257, 266, 270,	Self-diffusion, 16–18
271, 273, 277, 279	Sensible heat, 89
Polyvinylpyrrolidone (PVP) system, 59	Single-point imaging (SPI), 57
Potato chips	Single-point ramped imaging with enhancement
moisture content in, 37	(SPRITE), 57–58
Producers	Sitophilus oryzae, 266
source credibility of, 113	Sitotroga cerealella, 279
Propyleneglycol	Smallgoods, Garibaldi, 146
Staphylococcus aureus and, 35	Sodium acetate
Prostephanus truncatus, 245, 252, 276, 277, 279	Staphylococcus aureus and, 35
Protozoa, 278	Sodium dodecyl sulfate-polyacrylaxide gel
Proximity equilibration cells (PEC), 29	electrophoresis (SDS-PAGE), 165
Psocids, 249	Solution, management of, 220
Pteromalus cerealellae, 279	concentration restoration, 221–223
Ptinidae, 248	mass and dilution, 221
Pulsed electric field (PEF), 181, 182, 183	microbial contamination, 223
Pulsed vacuum osmotic treatments (PVOD),	recycling, 221
211, 215	spent solution discharge, 224
Pulse-field gradient-stimulated echo (PFGSTE)	spent solution uses, 223–224
sequence, 56	Soup, dried
PVOD. See Pulsed vacuum osmotic treatments	Staphylococcus aureus and, 35
PVP. See Polyvinylpyrrolidone system	SPI. See Single-point imaging
Pyemotes triticit, 281	Spider beetles, 248
Pyralis farinalis, 249	Spin-spin coupling, 89
Pyrethroids, 270–271	Sprays
1 yrethroids, 270–271	for insects, 270–271
R	SPRITE. See Single-point ramped imaging
Raisins	with enhancement
moisture content in, 37	Staphylococcus aureus, 35
Raman spectroscopy, 16 Red flour beetle, 246, 266, 271	Starch granules, 53–55
	Stegobium paniceum, 248
Research institutions	Stitophilus granarius, 245
public concern address in, 143	Stitophilus oryzae, 245, 266
Rhyzopertha dominica, 245, 266, 275, 279, 281	Stitophilus zeamais, 245, 252
Rice	Stored-product insect pests
moisture content in, 37	dermestid beetles, 247–248
Rice moth, 266	flour beetles, 246–247

Stored-product insect pests (cont.)	Thermal conductivity
flour moths, 248–249	of water, 8
grain beetles, 246–247	Thermomechanical analysis (TMA)
grain borers, 245–246	temperature observation and, 74
grain weevils, 245	Timescales
management tactics	glass, transition of, 77–78
housekeeping and exclusion, 263–265	nuclear magnetic resonance and, 48-50
insecticides. See Insecticides	water, activity of, 28-30
packaging, 265–267	Tin cap, 153
mealworms, 247	TMA. See Thermomechanical analysis
mites, 249–250	TP. See Triple point
monitoring tactics, 257–262	Tribolium castaneum, 246, 247, 266, 271, 281
psocids, 249	Tribolium confusum, 246, 271
spider beetles, 248	Trichinosis, 125–126
STRAFI. See Stray field	Trichogramma evanescens, 279
Strawberries	Trichogramma pretiosum, 279
vacuum impregnation response of, 215	Triple point (TP), 12–15
Stray field (STRAFI), 57	Trogoderma glabrum, 274, 278
Sublimation, enthalpy of	Trogoderma granarium, 247
water and, 8	Trogoderma variabile, 247–248, 253, 266
Sucrose	Twinkies
Staphylococcus aureus and, 35	moisture content in, 37
Supercritical point (CP), 12–15	Tylenol
Supermarkets	cyanide and, 106
source credibility of, 113	Typhaea stercorea, 248
Surface tension	2F
of water, 8	U
Sweeteners, artificial, 128	University institutions
Symmetric stretching	public concern address in, 143
vibrational motion of water, 16	1
Synergized pyrethrins, 270	\mathbf{V}
	van der Waals diameter
T	of water molecule, 5
Taco shells, 107	Vaporization, enthalpy of
Temperature, 178	water and, 8
observation of	Vegetables
dielectric analysis, 75	moisture content in, 37
differential scanning calorimetry, 74	processed, 190–192
dynamic mechanical analysis, 74	Venturia, 279
electron spin resonance	Very high-density amorphous (VHDA) ice, 15
spectroscopy, 75	VHDA. See Very high-density amorphous
nuclear magnetic resonance	Vitamins
spectroscopy, 75	freezing, 210–211
thermomechanical analysis, 74	von Humboldt, Alexander, 2
Tenebrio molitor, 247	von Humbolat, Mexander, 2
Tenebrio obscurus, 247	W
Teretriosoma nigrescens, 276, 281	Warehouse beetle, 247, 266
Terrorism, 104, 143–144	Water
Thales, 2	activity of
Theocolax elegans, 275	development of, 22–24
Theocour engulo, 270	development of, 22-24

distance in, 28–30	stability limit hypothesis in, 19
foods and, 30–36	uniformist, 18
measurement of, 36	molecule of, 4–5
moisture content, 31	Perrier, benzene and, 107
moisture transfer, 31	phases of, 11–15
new product development, 31–32	physical properties of, 8–10
process design and control, 35–36	proton exchange in, 4
shelf life of, 32–35	rotational motion of, 16, 17
sorption isotherm, 36–38	translational motion of, 16-18
stability of, 32–35	vibrational motion of, 15-16
Staphylococcus aureus growth, 35	volume increase, freezing and, 9-10
pressure, constant, 24–27	Water Lilies, 3
temperature, constant, 24–27	Water Music, 3
thermodynamic equilibrium, 24-27	Water, removal of
time scales in, 28-30	rate of, 177, 178
vapor pressure, 28	Weevils, 245
amorphous, 15	Wet milling process, 154–159
chemical properties of, 8-10	enzymes. See Enzymatic corn wet
elemental composition of, 2, 3-5	milling process
forms of, 11–15	lactic acid-dominated stage, 155
gas phase of, 15-16	sulfur dioxide-dominated stage, 155
hydrogen bonding and, 7	sulfur-dioxide diffusion stage, 155
isotopic composition of, 11	
liquid-phase density maximum of, 9	X
mobility of, 15–18	Xylocoris flavipes, 281
models of	
cluster, 20	Y
computer simulations of, 19-20	Yogurt
interstitial, 18	moisture content in, 37
liquid-liquid phase transition hypothesis	
in, 19	Z
mixture, 18	Zucchini
singularity-free hypothesis in, 19	vacuum impregnation response of, 215